High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws

نویسندگان

  • Zhanjing Tao
  • Fengyan Li
  • Jianxian Qiu
چکیده

In this paper, we propose a class of high-order schemes for solving oneand two-dimensional hyperbolic conservation laws. The methods are formulated in a central finite volume framework on staggered meshes, and they involve Hermite WENO (HWENO) reconstructions in space, and Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. Compared with central WENO methods, the spatial reconstruction used here is much more compact; and unlike the original HWENO methods, our proposed schemes require neither flux splitting nor the use of numerical fluxes. In the system case, local characteristic decomposition is applied in the reconstructions of cell averages to enhance the non-oscillatory property of the methods. The high resolution and robustness of the methods in capturing smooth and non-smooth solutions are demonstrated through a collection of oneand twodimensional scalar and system of examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes

ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...

متن کامل

High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...

متن کامل

ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws

ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...

متن کامل

On the Construction, Comparison, and LocalCharacteristic Decomposition for High-OrderCentral WENO Schemes

In this paper, we review and construct fifthand ninth-order central weighted essentially nonoscillatory (WENO) schemes based on a finite volume formulation, staggered mesh, and continuous extension of Runge–Kutta methods for solving nonlinear hyperbolic conservation law systems. Negative linear weights appear in such a formulation and they are treated using the technique recently introduced by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 281  شماره 

صفحات  -

تاریخ انتشار 2015